• AMERICAN GEOSERVICES
  • Ph 888-276-4027
  • [email protected]
  • Welcome
  • PORTFOLIO
  • Services
    • Geotechnical Engineering >
      • Geotechnical Engineering
      • Soils Reports/Geotech
      • Slopes/Retaining Walls
      • Drainage/ Groundwater >
        • Surface Drainage
        • LTAR (Long Term Acceptance Rate)
      • Expansive Soils >
        • Fat Clays
      • Collapsible Soils
      • Pile Integrity Test
      • Soil Nailing
      • Slope Stability Analysis
      • Geotechnical Instrumentation & Monitoring
      • Groundwater Monitoring
      • Mining and Quarrying
      • Swimming Pool Structure
    • Geotechnical Explorations >
      • Geotechnical Explorations >
        • Soil Boring and Sampling
      • Geotechnical Site Investigations >
        • Geophysical Soil Exploration
      • Standard Penetration Test
      • Cone Penetration Testing
      • Dynamic Cone Penetration Testing
      • Piezocone Penetrometer
      • Seismic Piezocone Penetration Test
      • Soil Infiltration Testing
      • Inclinometers
    • FOUNDATION ENGINEERING >
      • FOUNDATION ENGINEERING
      • Foundations Types >
        • Machine Foundations
        • Floating Foundations
        • Strip & Pad Foundations
        • HUD Foundations
        • Sheet Piles
        • Drilled Shafts
        • Wind Turbine Foundations
        • Geosynthetic Reinforced Foundations
      • Earthquake Resistant Foundations
      • Foundation Repair >
        • URETEK GEOPOLYMER INJECTION
      • Proprietary Foundation Systems
      • Basement Extensions
      • Forensic Engineering of Foundations
      • Foundation Grouting
      • Construction in Cold Regions
      • Foundation Design For Shipping Container Homes
    • GEOLOGICAL ENGINEERING >
      • Geological Hazard Assesment
      • GEOLOGICAL ENGINEERING
      • Rockfall Hazards
      • Landslides
      • Liquefaction
      • Debris Flow
      • Sinkholes
      • EMBANKMENT OR FILL
    • Septic Engineering >
      • Septic System Feasibility
      • Septic System Design
      • Alternative Septic Systems >
        • Glendon Biofilters
        • Mound Systems
        • Sand Filter System
      • Septic Mound Systems
      • Percolation Testing
      • Percolation Testing
      • Site Evalution for Sewage Systems
    • PHASE I-III ASSESSMENTS
    • ENVIRONMENTAL ASSESSMENTS >
      • Environmental Impact Statement (EIS)
      • Spill Prevention, Control, and Countermeasure (SPCC) Plans
      • Fault Investigation
      • Clean Construction Demolition Debris Certification
    • Site-Specific Seismic Evaluations >
      • Site-Specific Seismic Hazard Evaluation
      • Seismic Site Class Determination
      • Shear Wave Velocity Measurements
      • Response Spectra Analysis
      • SHAKE Analysis
      • Liquefaction Hazard Evaluation
    • BUILDING ASSESSMENTS >
      • Property Condition Assessments
      • Commercial and Residential Building Inspections
      • STRUCTURAL INSPECTION
    • Retaining Walls
    • Shoring
    • Pin Piles
    • Gabion wall
    • HELICAL PIER
    • Structural Retrofitting
    • MANTA RAY ANCHORS
    • GEOPHYSICS
    • PAVEMENTS / PUBLIC WORKS >
      • FLEXIBLE PAVEMENTS
    • SOFTWARE >
      • Retainpro 10
      • Ultrablock walls
  • Contact Us
  • Employment
  • Library
  • Florida Geo Services
  • Blog
  • Landing 2024
  • Welcome
  • PORTFOLIO
  • Services
    • Geotechnical Engineering >
      • Geotechnical Engineering
      • Soils Reports/Geotech
      • Slopes/Retaining Walls
      • Drainage/ Groundwater >
        • Surface Drainage
        • LTAR (Long Term Acceptance Rate)
      • Expansive Soils >
        • Fat Clays
      • Collapsible Soils
      • Pile Integrity Test
      • Soil Nailing
      • Slope Stability Analysis
      • Geotechnical Instrumentation & Monitoring
      • Groundwater Monitoring
      • Mining and Quarrying
      • Swimming Pool Structure
    • Geotechnical Explorations >
      • Geotechnical Explorations >
        • Soil Boring and Sampling
      • Geotechnical Site Investigations >
        • Geophysical Soil Exploration
      • Standard Penetration Test
      • Cone Penetration Testing
      • Dynamic Cone Penetration Testing
      • Piezocone Penetrometer
      • Seismic Piezocone Penetration Test
      • Soil Infiltration Testing
      • Inclinometers
    • FOUNDATION ENGINEERING >
      • FOUNDATION ENGINEERING
      • Foundations Types >
        • Machine Foundations
        • Floating Foundations
        • Strip & Pad Foundations
        • HUD Foundations
        • Sheet Piles
        • Drilled Shafts
        • Wind Turbine Foundations
        • Geosynthetic Reinforced Foundations
      • Earthquake Resistant Foundations
      • Foundation Repair >
        • URETEK GEOPOLYMER INJECTION
      • Proprietary Foundation Systems
      • Basement Extensions
      • Forensic Engineering of Foundations
      • Foundation Grouting
      • Construction in Cold Regions
      • Foundation Design For Shipping Container Homes
    • GEOLOGICAL ENGINEERING >
      • Geological Hazard Assesment
      • GEOLOGICAL ENGINEERING
      • Rockfall Hazards
      • Landslides
      • Liquefaction
      • Debris Flow
      • Sinkholes
      • EMBANKMENT OR FILL
    • Septic Engineering >
      • Septic System Feasibility
      • Septic System Design
      • Alternative Septic Systems >
        • Glendon Biofilters
        • Mound Systems
        • Sand Filter System
      • Septic Mound Systems
      • Percolation Testing
      • Percolation Testing
      • Site Evalution for Sewage Systems
    • PHASE I-III ASSESSMENTS
    • ENVIRONMENTAL ASSESSMENTS >
      • Environmental Impact Statement (EIS)
      • Spill Prevention, Control, and Countermeasure (SPCC) Plans
      • Fault Investigation
      • Clean Construction Demolition Debris Certification
    • Site-Specific Seismic Evaluations >
      • Site-Specific Seismic Hazard Evaluation
      • Seismic Site Class Determination
      • Shear Wave Velocity Measurements
      • Response Spectra Analysis
      • SHAKE Analysis
      • Liquefaction Hazard Evaluation
    • BUILDING ASSESSMENTS >
      • Property Condition Assessments
      • Commercial and Residential Building Inspections
      • STRUCTURAL INSPECTION
    • Retaining Walls
    • Shoring
    • Pin Piles
    • Gabion wall
    • HELICAL PIER
    • Structural Retrofitting
    • MANTA RAY ANCHORS
    • GEOPHYSICS
    • PAVEMENTS / PUBLIC WORKS >
      • FLEXIBLE PAVEMENTS
    • SOFTWARE >
      • Retainpro 10
      • Ultrablock walls
  • Contact Us
  • Employment
  • Library
  • Florida Geo Services
  • Blog
  • Landing 2024

sand filter systems

Sand Filters Systems:
A single-pass sand filter system pre-treats septic tank effluent by filtering it through sand before sending it to a soil treatment system. Various sand filter types and designs have been extensively tested and used in the United States. Other wastewater treatment filters use peat, pea gravel, crushed glass, or other experimental media, but sand is the best understood and the most predictable.Treatment mechanisms in a sand filter include physical filtering of solids, ion exchange (alteration of compounds by binding and releasing their components), and decomposition of organic waste by soil-dwelling bacteria. 
Sand Filters Application:
Since wastewater leaves a sand filter system as high-quality effluent, the soil in the trench or mound soil treatment system may be better able to accept it, and the system should last longer. Because sand filters produce cleaner wastewater, they are useful for sites that have been compacted, cut, or filled; and for environmentally sensitive areas like those near lakes, in shallow bedrock areas, aquifer recharge areas, and wellhead protection areas. Pre-treatment may allow a reduction in the three-foot separation required between the soil treatment system and the limiting soil layer. Sand filter systems may also be successfully retrofitted into drain fields that have failed because of excessive organic loading from lack of maintenance.

How Do Sand Filters Work?
Sewage flows from the house into one or several septic tanks, depending upon the size of the house and local requirements. Effluent from the septic tank(s) flows into a pump or lift tank. A pump introduces the effluent at the top of the watertight sand filter, using pressure distribution to apply the wastewater evenly to the filter surface to maximise treatment. A timer is used to dose the entire surface of the filter intermittently with wastewater. This draws oxygen from the atmosphere through the sand medium and its attached microbial community. The effluent is treated by physical, chemical, and biological processes. Suspended solids are removed by mechanical straining due to enhanced contact and sedimentation. Treatment occurs through the bacteria that colonise in the sand grains. Microorganisms use the organic matter and nutrients in the effluent for growth and reproduction

Designing Sand Filter Systems:
The two main types of sand filters differ in the rate at which wastewater is introduced into the system. Loading rates determine the amount of maintenance needed and how long the system will last. A single-pass filter with a high loading rate needs regular cleaning (every two to three months) of the sand surface to prevent clogging.
In high-rate sand filters, effluent is applied at rates of 1.6 to 5 gallons per day per square foot. This application rate means the surface of the filter must be easy to access. That is why high-rate sand filters are more common in warmer climates where they can be left open or have a lid that is easily removed.
Low-rate sand filters are the most common designs in Minnesota. Effluent from the pump tank is applied at rates of 0.8–1.5 gallons per day per square foot. Sizing criteria used for low-rate sand filters are similar to those for rock beds in mound soil treatment systems. These systems are covered with 6 inches of loamy topsoil and vegetation to provide insulation during the winter.
To determine the design size of the filter, the volume of wastewater flow from the residence is divided by the loading rate. The length to width ratio is not as critical as providing a system that distributes wastewater evenly across the filter surface at regular intervals. Timed dosing and a two-foot spacing of inlet pipes are recommended.
​
Placement:
Site flexibility is probably the biggest advantage of a sand filter system. Because the filter is watertight and uses media for treatment, the soil where it is constructed is not as important as the ability of the media in the filter to transfer oxygen. Without enough oxygen, bacterial action will be compromised. The system should be constructed to keep surface water from entering the filter.
Outflow drainage from the filter is provided by a four-inch pipe surrounded by pea rock. Depth of outflow should be one foot to 18 inches below the bottom of the sand. The effluent must drain freely out of the sand, since filter saturation reduces treatment effectiveness.

Picture
Picture
Final Disposal of Wastewater
Effluent discharged from this system will be very clean, but must still be applied to the soil for final treatment. The design of this part of the system is still being tested and sizing requirements are being developed. Effluent leaving the sand filter is sent to a soil treatment system. The effluent is so “clean,” a biomat layer does not form the way it does in soil treatment systems receiving effluent from septic tanks. A pressure distribution network is needed to apply effluent evenly throughout the system. Options for the soil treatment system include trenches, mounds, and drip distribution.
 
Operation and Maintenance
All the routine operation and maintenance practices suggested for any onsite treatment system apply to sand filters (See Septic System Owner’s Guide) Sand filters require more maintenance than a conventional septic-tank-drain field system. A maintenance contract is strongly recommended.
At high loading rates (2 to 6 gal./sq. ft.), the sand must be replaced every 2–5 years. At lower loading rates, the system will operate properly for a longer time. If higher loading rates are necessary, recirculating the waste is an attractive alternative to the single-pass design
Maintenance includes inspecting all components and cleaning and repairing when needed. Visual inspection of the effluent is required and often a laboratory analysis is necessary. A flow meter and timer should be installed and periodically checked to ensure the right amount of effluent is being applied to the system.

Picture

SERVICE AREAS & MAILING ADDRESSES 

COLORADO
Denver, CO
191 University Blvd #375 
Denver, CO 80206
(303) 325-3869
Dial Entire Number
​
Boulder, CO

2810 E. College Ave #102 
Boulder, CO 80303
(303) 325-3869
Dial Entire Nu
mber

​
Fort Collins, CO
​
1281 E Magnolia St D250, Fort Collins, CO 80524 
(303) 325-3869
Dial Entire Number
COLORADO
Colorado Springs, CO
3862 Hodgen Pond Ct Colorado Springs, CO 
(719) 571-9423
Dial Entire Number


Pueblo, CO
140 W. 29th St #311
Pueblo, CO 81008

(719) 571-9423​
Dial Entire Number

Glenwood Springs, CO
1338 Grand Avenue #316
Glenwood Springs, CO
(970) 436-7050

Dial Entire Number​​​

OREGON
Portland, OR
Salem, OR
Lincoln City, OR
Newport, OR
Eugene, OR
Bend, OR

6312 SW Capitol Hwy #231
Portland, OR 97239
(503) 922-3432
​Dial Entire Number
WASHINGTON
Seattle, WA
24 Roy Street #727
Seattle, WA 98109
(206) 418-6634
​Dial Entire Number

Vancouver, WA
Longview, WA
​41105 NE Cedar Ridge Rd
​Amboy, WA 98601
(360) 437-6369
Dial Entire Number​
​FLORIDA
Jacksonville, FL
6001 Argyle Forest Blvd,
Suite 21
Jacksonville, FL 32244

(904) 512-0085
Dial Entire Number

Orlando, FL
10524 Moss Park Rd,
Suite 204 #701

Orlando, FL 32832
(407) 362-1940
Dial Entire Number

FLORIDA
Tampa, FL
701 S Howard Ave #106, Tampa, FL 33606
(813) 569-7704
Dial Entire Number


​Miami, FL
3725 W. Flaglen St,
Miami, FL 33134
(305) 677-9494
​Dial Entire Number

Upcoming: INDIA

Pune, India
Bungalow 21, Acacia Garden 2 Magarpatta City, Hadapsar
India
Maharashtra
Pune
​411028



Copyright 2016 American GeoServices, LLC.  All rights reserved.